Effectiveness of Cocopeatnut Water and Various Growing Media on the Growth and Yield of Mustard Microgreens (Brassica juncea L.)
Abstract
Microgreens represent a modern agricultural innovation characterized by rapid harvest cycles and high nutritional value. This study aimed to evaluate the effects of Cocopeatnut water and various growing media on the growth and yield of mustard microgreens (Brassica juncea L.). A Completely Randomized Design (CRD) with a factorial pattern was applied, involving three irrigation treatments (100% Cocopeatnut water, 50% Cocopeatnut water + 50% distilled water, and 100% distilled water) and four types of growing media (soil, compost, Cocopeat, and rice husk charcoal). Observed parameters included plant height, fresh weight and consumable biomass per unit area and per tray, and crude protein content. The results showed that growing media significantly influenced most growth parameters, while Cocopeatnut water had a notable effect on plant height and consumable biomass per tray. The protein content of microgreens was higher than that of mature plants. Compost consistently produced the best growth performance across treatments. Cocopeatnut water, rich in natural plant hormones and nutrients, positively supported early plant development. The interaction between specific irrigation types and growing media led to enhanced plant performance compared to individual treatments. These findings suggest an environmentally friendly and nutrient-dense cultivation method suitable for urban agriculture. The study recommends the use of locally available organic materials to improve the sustainability, productivity, and quality of microgreens.
Full Text:
PDFReferences
Arzeta-Ríos, A. J., Guerra-Ramírez, D., Reyes-Trejo, B., Ybarra-Moncada, Ma. C., & Zuleta-Prada, H. (2020). Microwave heating effect on total phenolics and antioxidant activity of green and mature coconut water. International Journal of Food Engineering, 16(12). https://doi.org/10.1515/ijfe-2019-0378
Bulgari, R., Negri, M., Santoro, P., & Ferrante, A. (2021). Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates. Horticulturae, 7(5), 96. https://doi.org/10.3390/horticulturae7050096
Celestino, S., Nyoman, I. R. A. I., & Darmawati, I. D. A. A. Y. U. P. (2024). Growth response and yield quality of broccoli microgreen (Brassica oleracea var. Italica Planck) to LEDs irradiance duration and types of nutrients. Magna Scientia Advanced Biology and Pharmacy, 11(1), 033–038. https://doi.org/10.30574/msabp.2024.11.1.0082
Christofi, A., Margariti, G., Salapatas, A., Papageorgiou, G., Zervas, P., Karampiperis, P., Koukourikos, A., Tarantilis, P. A., Kaparakou, E. H., Misiakos, K., & Makarona, E. (2023). Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Photonic Sensors: A Preliminary Feasibility Study. Sensors (Basel, Switzerland), 23(13), 5937. https://doi.org/10.3390/s23135937
Uher, S. F., Radman, S., Opačić, N., Dujmović, M., Benko, B., Lagundžija, D., Mijić, V., Prša, L., Babac, S., & Šic Žlabur, J. (2023). Alfalfa, Cabbage, Beet and Fennel Microgreens in Floating Hydroponics—Perspective Nutritious Food? Plants, 12(11), 2098. https://doi.org/10.3390/plants12112098
Fahima, S., & Arthur, F. C. R. (2024). Growth Response and Yield of Stevia (Stevia rebaudiana) to Giving Old Coconut Water and Different Types of Irrigation. Journal of Soilscape and Agriculture, 2(2). https://doi.org/10.19184/jsa.v2i2.832
Frąszczak, B., & Kleiber, T. (2022). Microgreens Biometric and Fluorescence Response to Iron (Fe) Biofortification. International Journal of Molecular Sciences, 23(23), 14553. https://doi.org/10.3390/ijms232314553
Gao, M., He, R., Shi, R., Li, Y., Song, S., Zhang, Y., Su, W., & Liu, H. (2021). Combination of Selenium and UVA Radiation Affects Growth and Phytochemicals of Broccoli Microgreens. Molecules (Basel, Switzerland), 26(15), 4646. https://doi.org/10.3390/molecules26154646
Gioia, F. Di, Petropoulos, S. A., Ferreira, I. C. F. R., & Rosskopf, E. N. (2021). Microgreens: from trendy vegetables to functional food and potential nutrition security resource. Acta Horticulturae, 1321, 235–242. https://doi.org/10.17660/actahortic.2021.1321.31
Jat, R. S., Choudhary, R. L., Singh, H. V., Meena, M. K., Singh, V. V., & Rai, P. K. (2021). Sustainability, productivity, profitability and soil health with conservation agriculture based sustainable intensification of oilseed brassica production system. Scientific Reports, 11(1), 13366. https://doi.org/10.1038/s41598-021-92801-z
Johnson, S. A., Prenni, J. E., Heuberger, A. L., Isweiri, H., Chaparro, J. M., Newman, S. E., Uchanski, M. E., Omerigic, H. M., Michell, K. A., Bunning, M., Foster, M. T., Thompson, H. J., & Weir, T. L. (2020). Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Current Developments in Nutrition, 5(2), nzaa180–nzaa180. https://doi.org/10.1093/cdn/nzaa180
Kamal, K. Y., Khodaeiaminjan, M., El‐Tantawy, A. A., Moneim, D. A., Salam, A. A., Ash‐shormillesy, S. M. A. I., Attia, A., Ali, M. A. S., Herranz, R., El‐Esawi, M. A., Nassrallah, A. A., & Ramadan, M. F. (2020). Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiologia Plantarum, 169(4), 625–638. https://doi.org/10.1111/ppl.13083
Komeroski, M. R., Beninca, T., Portal, K. A., Malheiros, P. S., Klug, T. V, Flores, S. H., & Rios, A. O. (2024). Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters. Foods (Basel, Switzerland), 13(19), 3020. https://doi.org/10.3390/foods13193020
Kong, Y., Masabni, J., & Niu, G. (2023). Effect of Temperature Variation and Blue and Red LEDs on the Elongation of Arugula and Mustard Microgreens. Horticulturae, 9(5), 608. https://doi.org/10.3390/horticulturae9050608
Lu, S., Pentico, D., Castro, R., Dinh, S., Love, J. J., Larom, D. L., Pérez, R. L., & Liu, C. (2022). Effect of Ultraviolet Light Exposure and Compost Tea Supplementation on Growth, Antioxidant Activities, and Microbiome of Hydroponically Grown Mustard Greens. ACS Agricultural Science & Technology, 2(3), 521–533. https://doi.org/10.1021/acsagscitech.1c00292
Lunt, P. H., Fuller, K., Fox, M., Goodhew, S., & Murphy, T. R. (2022). Comparing the thermal conductivity of three artificial soils under differing moisture and density conditions for use in green infrastructure. Soil Use and Management, 39(1), 260–269. https://doi.org/10.1111/sum.12841
Manna, T., & Siddique, A. (2024). Impact of Humic Acid and Sulphur application on growth and yield of Indian Mustard under variable Water moisture regimes. IOP Conference Series: Earth and Environmental Science, 1327(1), 012033. https://doi.org/10.1088/1755-1315/1327/1/012033
Marchioni, I., Martinelli, M., Ascrizzi, R., Gabbrielli, C., Flamini, G., Pistelli, L., & Pistelli, L. (2021). Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family. Foods (Basel, Switzerland), 10(2), 427. https://doi.org/10.3390/foods10020427
Martínez-Ispizua, E., Calatayud, Á., Marsal, J. I., Cannata, C., Basile, F., Abdelkhalik, A., Soler, S., Valcárcel, J. V., & Martínez-Cuenca, M.-R. (2022). The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods, 11(3), 423. https://doi.org/10.3390/foods11030423
Matra, K., Saengha, W., Tanakaran, Y., Karirat, T., Buranrat, B., Deeseenthum, S., & Luang-In, V. (2021). Effect of Pre-soaking Mustard Green Seeds Prior to Cold Plasma Treatment on Bioactive Aspects of Microgreens. Tropical Journal of Natural Product Research, 5(8), 1422–1426. https://doi.org/10.26538/tjnpr/v5i8.16
Misra, G., & Gibson, K. E. (2021). Characterization of Microgreen Growing Operations and Associated Food Safety Practices. Food Protection Trends, 41(1), 56. https://doi.org/10.4315/1541-9576-41.1.56
Muthu, H. D., Izhar, T. N. T., Zakarya, I. A., Saad, F. N. M., & Ngaa, M. H. (2023). Comparative Study between Organic Liquid Fertilizer and Commercial Liquid Fertilizer and Their Growth Performances on Mustard Greens. IOP Conference Series: Earth and Environmental Science, 1135(1), 012002. https://doi.org/10.1088/1755-1315/1135/1/012002
Ramadhani, M. F., Prihatiningrum, A. E., & Abror, M. (2023). Optimization of Mustard Pakcoy Growth: The Influence of Media Composition and Coconut Water Concentration. IOP Conference Series: Earth and Environmental Science, 1242(1), 012004. https://doi.org/10.1088/1755-1315/1242/1/012004
Renna, M., Stellacci, A. M., Corbo, F., & Santamaria, P. (2020). The Use of a Nutrient Quality Score is Effective to Assess the Overall Nutritional Value of Three Brassica Microgreens. Foods, 9(9), 1226. https://doi.org/10.3390/foods9091226
Rus, R. C., Salisu, M. A., Usaizan, N., Nashir, I. M., Yusuff, O., Sulaiman, Z., & Hammed, A. (2023). Influence of Composition of Soilless Substrates Monitored with Iot Sensor Nodes on the Growth, Nutrient and Fruit Quality of Rockmelons (Cucumis melo Var. Cantalupensis). Indian Journal Of Agricultural Research, Of. https://doi.org/10.18805/ijare.af-758
Santoso, A. B. (2022). Effect of Dosage and Time Interval of Application of Liquid Organic Fertilizer Gamal Leaves on Growth and Yield of Mustard Plants (Brassica Juncea L.). AGARICUS: Advances Agriculture Science & Farming, 1(3), 127–130. https://doi.org/10.32764/agaricus.v1i3.2435
Sanyukta, Brar, D. S., Pant, K., Kaur, S., Nanda, V., Nayik, G. A., Ramniwas, S., Rasane, P., & Ercisli, S. (2023). Comprehensive Analysis of Physicochemical, Functional, Thermal, and Morphological Properties of Microgreens from Different Botanical Sources. ACS Omega, 8(32), 29558–29567. https://doi.org/10.1021/acsomega.3c03429
Septirosya, T., Septiana, D., Oktari, R. D., Solfan, B., & Aryanti, E. (2024). Sulforaphane content enhancement of red cabbage microgreens by using different planting media and nutrition solution. IOP Conference Series: Earth and Environmental Science, 1302(1), 012016. https://doi.org/10.1088/1755-1315/1302/1/012016
Seth, T., Mishra, G. P., Chattopadhyay, A., Deb Roy, P., Devi, M., Sahu, A., Sarangi, S. K., Mhatre, C. S., Lyngdoh, Y. A., Chandra, V., Dikshit, H. K., & Nair, R. M. (2025). Microgreens: Functional Food for Nutrition and Dietary Diversification. Plants (Basel, Switzerland), 14(4), 526. https://doi.org/10.3390/plants14040526
Shibaeva, T., Rubaeva, A., Sherudilo, E., & Titov, A. (2023). The effect of mineral nutrition on yield, nutritional value and consumer safety of radish microgreens under different photoperiods. BIO Web of Conferences, 67, 02025. https://doi.org/10.1051/bioconf/20236702025
Sugiharti, I. E. P., Raksun, A., & Mertha, I. G. (2022). The effect of liquid organic fertilizer from tofu industrial waste and EM4 on the growth of mustard greens (Brasicajuncea L.). Jurnal Pijar Mipa, 17(4), 554–559. https://doi.org/10.29303/jpm.v17i4.3412
Surendran, U., Sushanth, C. M., Joseph, E. J., Al-Ansari, N., & Yaseen, Z. M. (2019). FAO CROPWAT Model-Based Irrigation Requirements for Coconut to Improve Crop and Water Productivity in Kerala, India. Sustainability, 11(18), 5132. https://doi.org/10.3390/su11185132
Teng, Z., Luo, Y., Sun, J., Li, Y., Pearlstein, D. J., Oehler, M. A., Fitzwater, J. D., Zhou, B., Chang, C. Y., Hassan, M. A., Chen, P., Wang, Q., & Fonseca, J. M. (2024). Effect of Far-Red Light on Biomass Accumulation, Plant Morphology, and Phytonutrient Composition of Ruby Streaks Mustard at Microgreen, Baby Leaf, and Flowering Stages. Journal of Agricultural and Food Chemistry, 72(17), 9587–9598. https://doi.org/10.1021/acs.jafc.3c06834
Thepsilvisut, O., Sukree, N., Chutimanukul, P., Athinuwat, D., Chuaboon, W., Poomipan, P., Vachirayagorn, V., Pimpha, N., Chutimanukul, P., & Ehara, H. (2023). Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production. Horticulturae, 9(8), 876. https://doi.org/10.3390/horticulturae9080876
Tilahun, S., Baek, M. W., An, K.-S., Choi, H. R., Lee, J. H., Tae, S. H., Park, D. S., Hong, J. S., & Jeong, C. S. (2024). Preharvest Methyl Jasmonate Treatment Affects the Mineral Profile, Metabolites, and Antioxidant Capacity of Radish Microgreens Produced without Substrate. Foods (Basel, Switzerland), 13(5), 789. https://doi.org/10.3390/foods13050789
Tunsagool, P., Pimpak, V., Promwat, P., Kwandee, P., Kruaweangmol, P., Roytrakul, S., & Withayagiat, U. (2023). Metabolomic profiling of health‐benefit compounds in fresh and preserved mustard greens. International Journal of Food Science & Technology, 59(6), 4290–4299. https://doi.org/10.1111/ijfs.16865
Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules (Basel, Switzerland), 25(20), 4648. https://doi.org/10.3390/molecules25204648
Refbacks
- There are currently no refbacks.
ISSN: 3090-2657 Published by: Agrotechnology Study Program, Faculty of Agriculture, Universitas Muslim Indonesia, Website: fp.umi.ac.id, Official Website: umi.ac.id, Email: agrogenesis@umi.ac.id
Editorial Address: Faculty of Agriculture and Mine Land Bioremediation, Universitas Muslim Indonesia Jl. Urip Sumoharjo No. km.5, Panaikang, Panakkukang District, Makassar City, South Sulawesi 90231, Indonesia